Rút gọn:
\(\sqrt{25+4\sqrt{10}+4\sqrt{15}+4\sqrt{6}}\)
Câu 1: Rút gọn:
a) \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}\)
b) \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}\)
Câu 2: Giải phương trình:
\(\sqrt{9x^2-30x+25}=5\)
* Giải phương trình
a. \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)
b. \(\sqrt{x^2-10x+25}=4\)
* Chứng minh đẳng thức
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
rút gọn A= \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}\cdot\sqrt{4-\sqrt{15}}}{\sqrt{2}-\sqrt{3}+\sqrt{5}}\)
Bài 2:
Cho biểu thức E= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
a) Rút gọn E
b) Tìm x để E= 2
c) Tính giá trị của E khi x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
* Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
- Rút gọn biểu thức
a. \(2\sqrt{80}+3\sqrt{45}-\sqrt{245}\)
b. \(\dfrac{3}{2+\sqrt{3}}+\dfrac{13}{4-\sqrt{3}}+\dfrac{6}{\sqrt{3}}\)
c. \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d. \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
rút gọn A)\(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5-3}\right)^2}}\)
B) \(\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3+1}\right)^2}}}\)
C) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
Rút gọn
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
B= \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-5}\)