\(\frac{3^3}{\left(0,375\right)^2}=\frac{3^2.3}{\left(0,375\right)^2}=8.3=24\)
\(\frac{3^3}{\left(0,375\right)^2}=\frac{27}{\left(\frac{3}{8}\right)^2}=27:\frac{9}{64}=27\cdot\frac{64}{9}=192\)
\(\frac{3^3}{\left(0,375\right)^2}=\frac{3^2.3}{\left(0,375\right)^2}=8.3=24\)
\(\frac{3^3}{\left(0,375\right)^2}=\frac{27}{\left(\frac{3}{8}\right)^2}=27:\frac{9}{64}=27\cdot\frac{64}{9}=192\)
\(B=\frac{8^5.\left(-5\right)^8\left(-2\right)^5.10^9}{2^{16}.5^7+20^8}^7\)
\(C=\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}+\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}\)
Rút gọn các biểu thức trên .
(làm được bao nhiêu thì làm nhé :( )
\(\frac{-1}{3}+\frac{0,2-0,375+\left(5:11\right)}{-0,3+\left(9:16\right)-\left(15:22\right)}\)
Thực hiện phép tính trên
Rút gọn biểu thức sau:
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\) (n nguyên dương)
Tính:
a)\(\left\{\left[\left(6,2:0,31-\frac{5}{6}.0,9\right).0,2+0,15\right]:0,2\right\}:\left[\left(2+1\frac{4}{11}:0,1\right).\frac{1}{33}\right]\)
b)\(0,4\left(3\right)+0,6\left(2\right)-2\frac{1}{2}.\left[\left(\frac{1}{2}+\frac{1}{3}:0,5\left(8\right)\right)\right]:\frac{50}{53}\)
c)\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}\)
a) \(\frac{2^{19}.2^{27}+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
b) \(\frac{\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3-\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}}\)
Rút gọn
Rút gọn biểu thức:
\(C=\frac{12-\sqrt{15.135}+\left(\sqrt{31}\right)^2}{\sqrt{\frac{80}{45}}-\frac{10}{\left(\sqrt{3}\right)^2}}\)
rút gọn:
\(\frac{\left(-5\right)^3.40.4^3}{135.\left(-2\right)^{14}.\left(-100\right)^0}\)
giải chitieet hộ mk nha
Thực hiện phép tính:
a,\(25\frac{3}{5}:\left(\frac{-2}{3}\right)-15\frac{3}{5}:\left(\frac{-2}{3}\right)\)
b,\(9.\left(\frac{-2}{3}\right)^3+\frac{1}{2}:5\)
c,\(\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
Thực hiện phép tính
B=\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+...+2016}\right)\)