Biểu thức không tồn tại vì \(\sqrt{3-2^2}< 0\)
Biểu thức không tồn tại vì \(\sqrt{3-2^2}< 0\)
Rút gọn A = \(\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
Rút gọn B = \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Rút gọn biểu thức:
\(a,\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Thu gọn biểu thức:
\(E=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
1) Rút gọn biểu thứ
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A<1
3/ rút gọn biểu thức
A=\(\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{x-2\sqrt{x}+3}{x-2\sqrt{x}-3}-\dfrac{x}{x-3\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{3-\sqrt{x}}\)
Rút gọn E
E = \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2005^2}+\frac{1}{2006^2}}\)
1) Rút gọn biểu thức
A=\(\left(\dfrac{x\sqrt{x}+x-2}{x-1}-\dfrac{\sqrt{x}+2}{x+3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{2x+\sqrt{x}-3}\)
Rút gọn biểu thức:
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
Rút gọn biểu thức: C=\(\frac{1}{2+\sqrt{3}}+\sqrt{\frac{2}{6}}-\frac{2}{3+\sqrt{3}}\)