P = \(\left(1+\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
P = \(\left(\dfrac{a+\sqrt{a}+1+\sqrt{a}}{1+\sqrt{a}}\right)\left(\dfrac{-\left(a-\sqrt{a}\right)+\sqrt{a}-1}{\sqrt{a}-1}\right)\)
P = \(\left(\dfrac{a+2\sqrt{a}+1}{1+\sqrt{a}}\right)\left(\dfrac{-a+\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-1}\right)\)
P = \(\dfrac{a+2\sqrt{a}+1}{1+\sqrt{a}}.\dfrac{-a+2\sqrt{a}-1}{\sqrt{a}-1}\)
P = \(\dfrac{a+2\sqrt{a}+1}{1+\sqrt{a}}.\dfrac{a-2\sqrt{a}+1}{1-\sqrt{a}}\)
P = \(\dfrac{\left(1+\sqrt{a}\right)^2}{1+\sqrt{a}}.\dfrac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\) = \(\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
Ta có : \(P=\left(1+\dfrac{a+\sqrt{a}}{1+\sqrt{a}}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a-1}}\right)\)
\(=\left[1+\dfrac{\sqrt{a}\left(1+\sqrt{a}\right)}{1+\sqrt{a}}\right]\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a-1}}\right]\)
= \(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)