\(N=\dfrac{2^{19}\cdot3^9-3\cdot3^8\cdot5\cdot2^{18}}{3^9\cdot2^9\cdot2^{10}-2^{20}\cdot3^{10}}\)
\(=\dfrac{2^{18}\cdot3^9\cdot\left(2-5\right)}{3^9\cdot2^{19}\left(1-2\cdot3\right)}=\dfrac{1}{2}\cdot\dfrac{-3}{-5}=\dfrac{3}{10}\)
\(P=\dfrac{8\cdot10+8\cdot24+8\cdot560}{6\cdot45+6\cdot108+6\cdot120\cdot21}=\dfrac{8\left(10+24+560\right)}{6\left(45+108+120\cdot21\right)}=\dfrac{4}{3}\cdot\dfrac{2}{9}=\dfrac{8}{27}\)