\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne4\right)\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\\ =\dfrac{x+2\sqrt{x}-\left(x-2\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-1}{x-\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\dfrac{4\sqrt{x}}{x-4}\cdot\dfrac{1}{\sqrt{x}}\\ =\dfrac{4\sqrt{x}}{\sqrt{x}\left(x-4\right)}=\dfrac{4}{x-4}\)