Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

Rút gọn:   \(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right):\frac{a^2+1}{a^2-9}\)

Đỗ Thị Vân
26 tháng 6 2016 lúc 15:14

   \(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right)\):\(\frac{a^2+1}{a^2-9}\)

=\(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right]\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\left[\frac{\left(3a+1\right)\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}+\frac{\left(3a-1\right)\left(a-3\right)}{a\left(a+3\right)\left(a-3\right)}\right]\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{3a^2+9a+a+3+3a^2-9a-a+3}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{6\left(a^2+1\right)}{a\left(a-3\right)\left(a+3\right)}\).\(\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)

=\(\frac{6}{a}\)


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết
Đào Việt Anh
Xem chi tiết
Harry Huan
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết