\(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}\)
Rút gọn biểu thức trên
tính
a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)
b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)
c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)
e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)
f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)
h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)
a, \(\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}.\sqrt{\dfrac{49}{4}}\right)\): \(\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]\): \(\dfrac{1704}{445}\)
b, \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{99.100}\)
c, \(\left(1-\dfrac{1}{2}\right)\)x\(\left(1-\dfrac{1}{3}\right)\)x.....x\(\left(1-\dfrac{1}{n+1}\right)\) (n ϵ N)
d, -66 x \(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)\) + 124 x -37 + 63 x -124
e, \(\dfrac{7}{4}\) x \(\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^X\right]^X-\dfrac{5}{8}=\left(\dfrac{1}{2}\right)^4.\left(-9\right)\)
Thu gọn các biểu thức sau
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{299}\right)\)
C = \(-\dfrac{7}{4}.\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{333333}{424242}\right)\)
thực hiện phép tính
a)\(\left(\dfrac{9}{25}-2,18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b)\(\dfrac{3}{8}.19\dfrac{1}{3}-\dfrac{3}{8}.33\dfrac{1}{3}\)
c)\(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
d)\(\dfrac{2^{12}.3^5-4^6.81}{2^2.3^6+8^4.3^5}\)
e)\(4\left(-\dfrac{1}{2}\right)^2-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)
g)\(\sqrt{\dfrac{4}{81}}:\sqrt{\dfrac{25}{81}}-1\dfrac{2}{5}\)
Thực hiện phép tính
\(A=16\dfrac{2}{7}:\left(\dfrac{-3}{5}\right)-28\dfrac{2}{7}:\left(\dfrac{-3}{5}\right)\)
\(C=\left(\dfrac{3}{4}\right)^2-\left(\dfrac{7}{8}+3\right)+2.\left|\dfrac{-5}{8}\right|\)
a) \(\dfrac{\left(x+\dfrac{3}{4}\right)\cdot\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
b)\(\dfrac{\left(5-\dfrac{2}{7}\right)\cdot\dfrac{7}{9}\cdot\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
( \(\dfrac{1}{5}\) + \(\dfrac{5}{6}\) - \(\dfrac{9}{10}\) ) . \(\dfrac{3}{5}\) - 0,75 : \(1\dfrac{1}{2}\) - \(1,25^2\)
\(\xrightarrow[\left(1\dfrac{1}{2}\right)^4.\left(-3\dfrac{1}{3}\right)^3.\left(-1\right)^7]{\left(-5\right)^3.\left(-0,9\right)^2}\)
\(\left(\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}\right)\) + \(\left(\dfrac{-6}{13}+\dfrac{1}{2}+1\dfrac{1}{3}\right)\)
0,75 + \(\dfrac{2}{5}\) + \(\left(\dfrac{1}{9}-1\dfrac{2}{5}+\dfrac{5}{4}\right)\)
-66 . \(\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{11}\right)\) + 124 . (-37) + 63 . (-124)