Đặt \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(\Rightarrow\frac{1}{2^2}.A=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)
\(\Rightarrow\frac{1}{4}.A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}+\frac{1}{16^2}\)
\(\Rightarrow A-\frac{1}{4}.A=\left(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)-\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}+\frac{1}{16^2}\right)\)
\(\Rightarrow\frac{3}{4}.A=\frac{1}{2^2}-\frac{1}{16^2}=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
\(\Rightarrow A=\frac{63}{256}:\frac{3}{4}=\frac{21}{64}\)
K rút họn đc đâu bạn. Bạn muốn chứng minh tổng trên bé hơn hoặc lớn hơn số nào thì đc