`[2x+\sqrt{2}]/[4x^2+4\sqrt{2}x+\sqrt{2}]`
`=[\sqrt{2}(\sqrt{2}x+1)]/[\sqrt{2}(2\sqrt{2}x^2+4x+1)]`
`=[\sqrt{2}x+1]/[2\sqrt{2}x^2+4x+1]`
\(\dfrac{2x+\sqrt{2}}{4x^{2^{ }}4\sqrt{2}x^{2^{ }}+\sqrt{2}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{2}x+1\right)}{\sqrt{2}\left(2\sqrt{2}x^2+4x+1\right)}\)
= \(\dfrac{\sqrt{2}x+1}{2\sqrt{2}x^24x+1}\)