\(C=\dfrac{x^2-x-30}{x^2-25}=\dfrac{x^2-6z+5x-30}{\left(x-5\right)\left(x+5\right)}=\dfrac{\left(x-6\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-6}{x-5}\)
\(C=\dfrac{x^2-x-30}{x^2-25}=\dfrac{\left(x^2-6x\right)+\left(5x-30\right)}{\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{\left(x-6\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-6}{x-5}\)
C = \(\dfrac{\left(x^2-10x+25\right)+\left(9x-45\right)}{x^2-5^2}\) = \(\dfrac{\left(x-5\right)^2+9\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\) = \(\dfrac{\left(x-4\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\) = \(\dfrac{x-4}{x+5}\)