RÚt gọn c)\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{899}+\sqrt{900}}\)
d)\(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
e) \(\dfrac{x+5-x\sqrt{x-1}}{x-1-3\sqrt{x-1}}\)
b) \(\dfrac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}\)
=)) giúp câu nào được thì giúp ạ <3
d) \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}+\dfrac{6\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\dfrac{7-\sqrt{7}}{\sqrt{7}-1}\)
\(=\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{4}+\dfrac{6\left(3-\sqrt{3}\right)}{6}-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}=3\)
b) \(\dfrac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}=\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{20+2\sqrt{20}+1}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{20}+1\right)^2}=\sqrt{5}-\left(\sqrt{20}+1\right)=\sqrt{5}-2\sqrt{5}-1=-1-\sqrt{5}\)
c) \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{899}+\sqrt{900}}\)
\(=\dfrac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\dfrac{\sqrt{899}-\sqrt{900}}{\left(\sqrt{899}+\sqrt{900}\right)\left(\sqrt{899}-\sqrt{900}\right)}\)\(=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}-\sqrt{4}}{3-4}+...+\dfrac{\sqrt{899}-\sqrt{900}}{899-900}\)
\(=-\left(1-\sqrt{2}\right)-\left(\sqrt{2}-\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{4}\right)+...-\left(\sqrt{899}-\sqrt{900}\right)\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}+...-\sqrt{899}+\sqrt{900}\)
\(=-1+\sqrt{900}\) \(=-1+30=29\)
b) \(\dfrac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{20+4\sqrt{5}+1}\)
\(=\sqrt{5}-\sqrt{\sqrt{20}+2\sqrt{20}+1}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{20}+1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{20}+1\right)\)
\(=\sqrt{5}-\sqrt{20}-1\)
\(=\sqrt{5}-2\sqrt{5}-1\)
\(=-\sqrt{5}-1\)