\(ĐK:a\ge0,a^2\pm b\ge0,a\ge\sqrt{a^2-b}\)
\(A=\frac{\sqrt{a+\sqrt{a^2-b}}+\sqrt{a-\sqrt{a^2-b}}}{\sqrt{2}}\)
\(A^2=\frac{2a+2\sqrt{a^2+b}}{2}=a+\sqrt{a^2+b}\)
\(A=\sqrt{a+\sqrt{a^2+b}}\)
\(ĐK:a\ge0,a^2\pm b\ge0,a\ge\sqrt{a^2-b}\)
\(A=\frac{\sqrt{a+\sqrt{a^2-b}}+\sqrt{a-\sqrt{a^2-b}}}{\sqrt{2}}\)
\(A^2=\frac{2a+2\sqrt{a^2+b}}{2}=a+\sqrt{a^2+b}\)
\(A=\sqrt{a+\sqrt{a^2+b}}\)
Rút gọn biểu thức sau :
\(I=\frac{a^{\frac{4}{3}}-8a^{\frac{2}{3}}b}{a^{\frac{2}{3}}+2\sqrt[3]{ab}+4b^{\frac{2}{3}}}\left(1-2\sqrt[3]{\frac{b}{a}}\right)^{-1}-a^{\frac{2}{3}}\)
Rút gọn biểu thức:
\(\frac{2\sqrt{ab}}{a+b}\sqrt{1+\frac{1}{4}\sqrt{\frac{a}{b}-\sqrt{\frac{b}{a}}}}\) với a,b > 0
Rút gọn các biểu thức sau :
a) \(A=\left(0,04\right)^{-1,5}-\left(0,125\right)^{\frac{-2}{3}}\)
b) \(B=\left(6^{\frac{-2}{7}}\right)^{-7}-\left[\left(\left(0,2\right)^{0,75}\right)^{-4}\right]\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\left(a,b>0\right)\)
Đơn giản biểu thức sau :
\(M=\frac{\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)^2}{\sqrt[3]{ab}}:\left(2+\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}}\right)\)
Rút gọn :
\(G=\left(\sqrt{ab}-\frac{ab}{a+\sqrt{ab}}\right):\frac{\sqrt[4]{ab}-\sqrt{b}}{a-b}.\frac{1}{\sqrt{b}+\sqrt[4]{ab}}\)
Rút gọn biểu thức
\(\frac{1}{a^2}\sqrt[3]{a^6+3a^4b^2+3a^2b^4+b^6}-\left[\frac{a^2-\left(a^{\frac{2}{3}}-b^{\frac{2}{3}}\right)^3+2b^2}{a^2+\left(a^{\frac{2}{3}}-b^{\frac{2}{3}}\right)^3+2b^2}\right]\)
Cho a, b là những số thực dương. Rút gọn các biểu thức sau:
\(a)\ \dfrac{a^{\dfrac{4}{3}}(a^{\dfrac{-1}{3}}+a^{\dfrac{2}{3}})}{a^{\dfrac{1}{4}}(a^{\dfrac{3}{4}}+a^{\dfrac{-1}{4}})}\)
\(b)\ \dfrac{b^{\dfrac{1}{5}} (\sqrt[5]{b^4}-\sqrt[5]{b^{-1}})}{b^{\dfrac{2}{3}}(\sqrt[3]{b}-\sqrt[3]{b^{-2}})}\)
\(c)\ \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{-1}{3}}-a^{\dfrac{-1}{3}}b^{\dfrac{1}{3}}}
{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)
\(d)\ \dfrac{a^{\dfrac{1}{3}} \sqrt{b}+b^{\dfrac{1}{3}} \sqrt{a}}
{\sqrt[6]{a}+\sqrt[6]{b}}\)
Rút gọn :
\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)
Đơn giản biểu thức sau :
\(F=\left(1-2\sqrt{\frac{a}{b}}+\frac{a}{b}\right):\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2\)