\(B=1+\dfrac{a-\sqrt{a}}{1-a}.1+\dfrac{a+2\sqrt{a}}{2+\sqrt{a}}=1+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}=1-\dfrac{\sqrt{a}}{\sqrt{a}+1}+\sqrt{a}=\dfrac{1}{\sqrt{a}+1}+\sqrt{a}=\dfrac{a+\sqrt{a}+1}{\sqrt{a}+1}\)