Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Rút gọn biểu thức: \(A=\dfrac{1-ax}{1+ax}\sqrt{\dfrac{1+bx}{1-bx}}\)với \(x=\dfrac{1}{a}\sqrt{\dfrac{2a-b}{b}}\)và 0 < a < b < 2a

Akai Haruma
3 tháng 3 2020 lúc 0:59

Lời giải:

\(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow ax=\sqrt{\frac{2a-b}{b}}\)

\(\Rightarrow 1+ax=\frac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}; 1-ax=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)

\(\Rightarrow \frac{1-ax}{1+ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2(b-a)}\)

Lại có:

\(\frac{1+bx}{1-bx}=\frac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\frac{a^2-(2ab-b^2)}{(a-\sqrt{2ab-b^2})^2}=\frac{(a-b)^2}{(a-\sqrt{2ab-b^2})^2}\)

\(\Rightarrow \sqrt{\frac{1+bx}{1-bx}}=\frac{b-a}{a-\sqrt{2ab-b^2}}\)

Do đó:

$A=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2a-2\sqrt{2ab-b^2}}=\frac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1$

Khách vãng lai đã xóa