Giải:
a) \(\sqrt{\left(2,5-0,7\right)^2}\)
\(=\left|2,5-0,7\right|\)
\(=\left|1,8\right|=1,8\)
Vậy ...
b) \(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)
\(=\dfrac{3+39}{7+91}\)
\(=\dfrac{42}{98}=\dfrac{3}{7}\)
Vậy ...
Giải:
a) \(\sqrt{\left(2,5-0,7\right)^2}\)
\(=\left|2,5-0,7\right|\)
\(=\left|1,8\right|=1,8\)
Vậy ...
b) \(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}\)
\(=\dfrac{3+39}{7+91}\)
\(=\dfrac{42}{98}=\dfrac{3}{7}\)
Vậy ...
Giúp mk làm bài nay vs mấy bạn lớp 8 nhé
bài 1
Cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)
a) tìm điều kiện xác định .rút gọn A
b) với giá trị nào của x thì A > \(\dfrac{1}{3}\)
c) tìm x để A nhỏ nhất
bài 2
chứng minh các đẳng thức sau:
a) 2\(\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b)\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c)\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
a, Rút gọn biểu thức \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
b, Tính giá trị biểu thức Q = \(\dfrac{a^6-2a^5+a-2}{a^5+1}\)biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\)và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y-z\right)}\)
Giúp em với ạ
Rút gọn các biểu thức : a) \(\sqrt{\left(3+\sqrt{5}\right)^2}\)
b) \(\sqrt{\left(5-\sqrt{5}\right)^2}\)
c) \(\sqrt{\left(4-\sqrt{11}\right)^2}+\sqrt{11}\)
d) \(\sqrt{\left(\sqrt{8}-7\right)^2}-\sqrt{8}\)
Rút gọn biểu thức :
a) \(\sqrt{\left(4-\sqrt{15}\right)^2}\)+ \(\sqrt{15}\)
b) \(\sqrt{\left(2-\sqrt{3}\right)^2}\) + \(\sqrt{\left(1-\sqrt{3}\right)^2}\)
1. Tìm GTLN, GTNN của hàm số: \(y=3\sqrt{x-1}+4\sqrt{5-x}\)
2. Tìm GTLN của biểu thức. \(A=\sqrt{\left(x-1994\right)^2}+\sqrt{\left(x+1995\right)^2}\)
3. Tìm GTNN của biểu thức: \(B=\dfrac{3}{2+\sqrt{2x-x^2+7}}\)
4. Tìm GTNN của: \(C=\dfrac{5-3x}{\sqrt{1-x^2}}\)
\(D=\left[\dfrac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\dfrac{\sqrt{a}+\sqrt{b}}{1+\sqrt{ab}}\right]\div\left[1+\dfrac{a+b+2ab}{1-ab}\right]\)
a)Rút gọn:
b)Tính giá trị của \(a=\dfrac{2}{\sqrt{3}+2}\)
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a)Rút gọn
b)Tìm GTNN A
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
bài 1 thực hiện các phép tính sau:
a) \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
b)\(2\sqrt{2}-\sqrt{3^2}\)
c) \(\left(\sqrt{x}-3\right)\left(4-\sqrt{x}\right)\)
bài 2 rút gọn biểu thức sau:
a)\(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b)\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
c)\(\frac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
d)\(\frac{x-2\sqrt{x}}{x+4-4\sqrt{x}}\)