Rút gọn biểu thức : \(P=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{a-b}-\frac{b}{b-\sqrt{ab}}+\frac{a}{\sqrt{ab}+a}\right)-\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{2}\) với a,b > 0 \(a\ne b\)
Cho biểu thức A=\(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
a)Tìm ĐKXĐ
b)Rút gọn A
cho biểu thức: M=\(\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{a}}{a+b+2\sqrt{ab}}\)
1, rút gọn M
2, tính giá trị a; b biết khi \(\frac{a}{b}=\frac{1}{4}\) thì M=1
1 . cho biểu thức : K = \(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right).\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}\)
a. rút gọn K
b. tính giá trị của K khi a = \(4+2\sqrt{3}\) và b = \(4-2\sqrt{3}\)
Rút gọn biểu thức:
\(M=\left(\frac{\sqrt{50a}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{20b}}{\sqrt{b}-\sqrt{a}}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)
Cho biểu thức \(M=\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và \(a\ne b\) . Rút gọn M và tính giá trị biểu thức M biết \(\left(1-a\right).\left(1-b\right)+2\sqrt{ab}=1\)
\(P=\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}-\frac{a}{\sqrt{a}+\sqrt{b}}-\frac{b}{\sqrt{b}-\sqrt{a}}\) với b > a > 0
a) Rút gọn P
b) Biết \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\) hãy tinha giá trị biểu thức P
Cho P = \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a) Rút gọn P
b) So sánh P với -1
1) Tính giá trị biểu thức A = \(\frac{\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)
2) Cho B = \(\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}\)
a. Tìm ĐKXĐ của B và rút gọn B
b. Tính giá trị biểu thức B khi a = \(1+3\sqrt{2}\) và b = \(10+\frac{11\sqrt{8}}{3}\)