Ta có : 2A = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)
2A - A = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)
A = 2 - \(\dfrac{1}{2^{2012}}\)
Ta có : 2A = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)
2A - A = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)
A = 2 - \(\dfrac{1}{2^{2012}}\)
Rút gọn biểu thức:
A= 1+\(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\)
Bài 1. Chứng tỏ rằng: B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}< 1\)
Bài 2. so sánh : A=\(\dfrac{2011+2012}{2012+2013}\)
và B=\(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 3. Rút gọn : B= \(\left(1-\dfrac{1}{1}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
Bài 4. Rút gọn biểu thức : A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
Bài 5. Tìm số nguyên \(\pi\) sao cho \(\pi+5\) chia hết cho \(\pi-2\)
HELP ME!!!! MÌNH TICK CHO HA
Tính
P=\(\left(1-\dfrac{28}{10}\right)\left(1-\dfrac{52}{22}\right)\left(1-\dfrac{80}{36}\right)...\left(1-\dfrac{21808}{10900}\right)\)
Q=\(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\dfrac{2013}{1}+\dfrac{2014}{2}+\dfrac{2015}{3}+...+\dfrac{4023}{2011}+\dfrac{4024}{2012}-2012}\)
Bài 1: Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65)
b. \(\dfrac{7}{12}\) + \(\dfrac{5}{6}\) + \(\dfrac{1}{4}\) - \(\dfrac{3}{7}\) - \(\dfrac{5}{12}\)
c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
d, \(\dfrac{3}{2^2}\) . \(\dfrac{8}{3^2}\) . \(\dfrac{15}{4^2}\) ... \(\dfrac{899}{30^2}\)
Bài 2: Tìm x biết:
a, 2x + 2x+1 + 2x+2 + 2 x+3 = 480
b, \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\) . x = \(\dfrac{2012}{1}+\dfrac{2011}{2}+\dfrac{2010}{3}+...+\dfrac{2}{2011}+\dfrac{1}{2012}.\)
1,So sánh :
A=\(\dfrac{2011+2012}{2012+2013}\) ; B=\(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
2,Cmr:
\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{37.40}< \dfrac{1}{3}\)
Cho biểu thức :
\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\)
Hãy so sánh A với \(\dfrac{3}{2}\)
Tính \(\dfrac{P}{Q}\) biết:
P= \(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\)
Q= \(\dfrac{1}{2011}+\dfrac{2}{2010}+\dfrac{3}{2009}+...+\dfrac{2010}{2}+\dfrac{2011}{1}\)
Tính \(M=\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\)
BT1: Tính giá trị của biểu thức:
3) \(\dfrac{5}{3}.\dfrac{11}{2}+\dfrac{1}{4}\)
4) \(\left(\dfrac{5}{2}-\dfrac{1}{3}\right).\dfrac{9}{2}-\dfrac{6}{7}\)