A = 1 + 3 + 32 + 33 +.... +3100
3A = 3(1 + 3 + 32 + 33 +....+3100)
3A = 3 + 32 + 33 + 34 +....+3101
3A - A = 2A = (3 + 32 + 33 + 34 +.... + 3101) - (1 + 3 + 32 + .... + 3100)
2A = ( 3 - 3 ) + ( 32 - 32) +.....+ (3100 - 3100) + (3101 - 1)
2A = 0 + 0 +....+ 0 + 3101 - 1
2A = 3101 - 1
A = (3101 - 1) : 2
\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)