\(A=\dfrac{u-v}{\sqrt{u}+\sqrt{v}}-\dfrac{\sqrt{u^3}+\sqrt{v^3}}{u-v}\)
\(=\sqrt{u}-\sqrt{v}-\dfrac{u\sqrt{u}+v\sqrt{v}}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)
\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)
\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}\)
\(=\dfrac{\left(\sqrt{u}-\sqrt{v}\right)\sqrt{u}-\left(\sqrt{u}-\sqrt[]{v}\right)\sqrt{v}-\left(u-\sqrt{uv}+v\right)}{\sqrt{u}-\sqrt{v}}\)
\(=\dfrac{u-\sqrt{uv}-\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}\)
\(\Leftrightarrow\)\(-\dfrac{\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)
để cả căn hơi phức tạp nhỉ? nếu tinh ý 1 chút thì sẽ đơn giản thôi :3
chú ý nhé ! nếu ta đăt như sau \(\sqrt{u}=a;\sqrt{v}=b\)
đến đấy thì dễ nhỉ<3;
\(A=\dfrac{a^2-b^2}{a+b}-\dfrac{a^3+b^3}{a^2-b^2}\)
xem nào ~~ để ý xem nó có phải hằng đẳng thức quen thuộc k nhỉ, thôi k quan tâm cứ trâu bò vào xem ra cái j k đã bạn ạ
\(A=\dfrac{\left(a+b\right)\left(a-b\right)}{a+b}-\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a-b\right)\left(a+b\right)}\)
\(A=a-b-\dfrac{a^2-ab+b^2}{a-b}\) có thể bạn nghĩ đến đây là khó, đùng ngại ta hãy cứ quy đồng chúng
\(A=\dfrac{\left(a-b\right)^2-a^2+ab-b^2}{a-b}=\dfrac{-ab}{a-b}\)