\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\)
\(2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)
\(A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)
\(A=2-\dfrac{1}{2^{2012}}\)
\(A=2-2^{-2012}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
\(2a=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}\)
\(A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\right)\)
\(A=2-\dfrac{1}{2^{2012}}\)
\(A=\dfrac{2^{2013}-1}{2^{2012}}=1\)
2A=2+1+1/2+1/22+1/23+..............+1/22012
2A - A = (2+1+1/2+1/23 +..........+1/22012)- (1+1/2+1/22+1/23+...........+1/22012)
A= 2-1/22012
A=2013 -1/22012
Rút gọn: A = 1 + 1/2 + 1/2^2 + 1/2^3 + ..... + 1/2^2012
=> 2A = 2 + 1 + 1/2 + ...+ 1/ 2^2011
=> 2A - A =(2+1+1/2+...+1/2^2011)
=> (1+1/2+1/2^2+...+1/2^2012)
=> A= 2- 1/ 2^2012