Rút gọn A = \(\frac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}\)
Rút gọn B = \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
1,Rút gọn:
a, \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+2}\)
b,\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
Cho A = \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
B = \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{35}}\)
Chưnhs minh rằng: B > A
1. Rút gọn
P=\(2\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}:\left[\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}-\frac{1}{2}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2\right]\)
Rút gọn biểu thức:
\(a,\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(b,\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
Rút gọn
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}\)
rút gọn : A=\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
rút gọn
a)\(\frac{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}}{\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b)\(\sqrt{31+4\sqrt{35}+4\sqrt{7}+8\sqrt{5}}\)
1, rút gọn biểu thức:\(A=\sqrt{1+\frac{2}{3}}\sqrt{1+\frac{2}{4}}\sqrt{1+\frac{2}{5}}.....\sqrt{1+\frac{2}{2006}}\)