\(-\text{ Có: }Q\left(x\right)=x^4-x^3-x^2+2x+1\)
\(\Rightarrow2.Q\left(x\right)=2x^4-2x^3-2x^2+4x+2\)
\(-\text{ Theo chứng minh: }\left\{{}\begin{matrix}P\left(x\right)=2x^4+2x^3-3x^2+x+6\\2.Q\left(x\right)=2x^4-2x^3-2x^2+4x+2\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)-2Q\left(x\right)=\left(2x^4+2x^3-3x^2+x+6\right)-\left(2x^4-2x^3-2x^2+4x+2\right)\)
\(=2x^4+2x^3-3x^2+x+6-2x^4+2x^3+x^2-2x-1\)
\(=\left(2x^4-2x^4\right)+\left(2x^3+2x^3\right)+\left(-3x^2+x^2\right)+\left(x-2x\right)+\left(6-1\right)\)
\(4x^3+\left(-2x^2\right)+\left(-x\right)+5\)