a) \(P=\left(\dfrac{\sqrt{y}}{\sqrt{y}-2}+\dfrac{\sqrt{y}}{\sqrt{y}+2}\right)\cdot\dfrac{y-4}{\sqrt{4y}}\)
\(=\dfrac{2y}{y-4}\cdot\dfrac{y-4}{\sqrt{4y}}=\sqrt{y}\)
b) thay y = 1/4 vào P, ta được:
\(P=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
c) P > 3 \(\Leftrightarrow\sqrt{y}>3\Leftrightarrow y>9\)