\(x^4y^4+4=x^4y^4+4x^2y^2+4-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-4x^2y^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
\(x^4y^4+4=x^4y^4+4x^2y^2+4-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-4x^2y^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
1. Phân tích thành nhân tử
A) x4 + 2x3 + x2
B) x3 - x + 3x2y + 3xy2 + y3 - y
C) 5x2 - 10xy +5y2 - 20z2
2. Phân tích thành nhân tử
A) x2 + 5x -6
B) 5x2 + 5xy - x - y
C) 7x - 6x2 - 2
3.Phân tích thành nhân tử
A) x2 + 4 + 3
B) 2x2 + 3x -5
C) 16x - 5x2 - 3
4. Tìm x, bt
A) 5x ( x - 1 ) = x -1
B) 2( x + 5 ) -x2 - 5x = 0
Phân tích đa thức sau thành nhân tử x² + 3x² - 4.
Phân tích đa thức thành nhân tử:
16x^4 - 72x^2 + 81
Bài 1. Phân tích đa thức sau thành nhân tử
\(x^4-8x\)
Phân tích đa thức thành nhân tử
\(x^4+2019x^2+2018x+2019\)
phân tích đa thức thành nhân tử
(-x-1)2-(3x-4)2
\(x^4+1\)
dùng phương pháp thêm bớt cùng một hạng tử để phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử:
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Phân tích đa thức thành nhân tử:
1) 8 – x2 + 2x
2) 2x2 – 3x + 1
3) x2 + 4