a) x7 + x2 + 1
= x7 - x + x2 + x + 1
= x(x6-1) + (x2+x+1)
= x(x3+1)(x-1)(x2+x+1) + (x2+x+1)
= (x2+x+1)(x5-x4+x2-x+1)
b) (ab+bc+ca)2 + (a+b+c)2(a2+b2+c2)
= (ab+bc+ca)2 + [(a2+b2+c2) + 2(ab+bc+ca)](a2+b2+c2)
Đặt a2+b2+c2 = x ; ab + bc + ca = y, ta có:
y2 + (x+2x)x = x2 + 2xy + y2 = (x+y)2
= (a2+b2+c2+ab+bc+ca)2