a) a^4 - b^4 = (a^2)^2 - (b^2)^2 = (a^2+b^2)(a^2-b^2) = (a^2+b^2)(a+b)(a-b)
a) a4 - b4 = (a2)2 - (b2)2
= ( a2 - b2) (a2 + b2)
= ( a - b)(a + b)( a2 + b2)
a) \(a^4-b^4\)
=\(\left(a^2\right)^2-\left(b^2\right)^2\)
=\(\left(a^2-b^2\right)\left(a^2+b^2\right)\)
=\(\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
b) \(a^6-b^6\)
= \(\left(a^3\right)^2-\left(b^3\right)^2\)
=\(\left(a^3-b^3\right)\left(a^3+b^3\right)\)
=\(\left(a^3-3a^2b+3ab^2-b^3\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)