\(1-2y+y^2=\left(1-y\right)^2\)
\(\left(x+1\right)^2-25=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
\(27+27x+9x^2=9\left(3+3x+x^2\right)\)
\(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
\(3x^2-6xy+9y^2=3\left(x^2-2xy+3y^2\right)\)
\(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
\(x^2-4x-5=x^2+x-5x-5=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
a ) \(1-2y+y^2=y^2-2y+1=\left(y-1\right)^2\)
b ) \(\left(x+1\right)^2-25=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right).\)
c ) \(1-4x^2=\left(1-2x\right)\left(1+2x\right).\)
d ) \(27+27x+9x^2=9\left(3+3x+x\right)=9\left(3+4x\right).\)
e ) \(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
f ) \(3x^2-6xy+9y^2=3\left(x^2-2xy+3y^2\right).\)
g ) \(x^2+4x+3==x^2+3x+x+3=\left(x+1\right)\left(x+3\right)\)
h ) \(x^2-4x-5=x^2+x-5x-5=\left(x-5\right)\left(x+1\right).\)
a, 1 - 2y + y2
= y2 -2y + 1
= (y -1)2
b, ( x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c, 1- 4x2
= (1- 2x)(1 + 2x)
d, 27 + 27x + 9x2
= 9(x2 + 3x + 3)