\(x^4+4\)
\(=x^{4^{ }}+4x^{2^{ }}+4-4x^2\)
\(=\left(x^4+4x^2+4\right)-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(x^4+4\)
= \(\left(x^4+4x^2+4\right)-4x^2\)
= \(\left(x^2+2\right)-\left(2x\right)^2\)
= \(\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
x4 + 4
= (x2)2 + 2.2.x2 + 22 - 2.2.x2
= (x + 2)2 - 4x2
= (x + 2 - 2x)(x + 2 + 2x)
x4 + 4 = x4 + 4x2 + 4 - 4x2 = (x4 + 4x2 + 4) - 4x2
= (x2+2) - (2x)2 = (x2 + 2 - 2x)(x2 + 2 + 2x)
x4+4
=x4+4x2+4-4x2
=(x4+4x2+4)-4x2
=(x2-2)2-4x2
=(x2-2-2x)(x2-2+2x)
x4 + 4
= ( x2)2 + 4x2 + 22 - ( 2x)2
= ( x2 + 2)2 - ( 2x)2
= ( x2 + 2 + 2x )( x2 + 2 + 2x)
Dấu ở giữa là cộng hay trừ vậy.Bạn xem lại đề giùm