Giải:
a) \(25-4x^2-4xy-y^2\)
\(=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x-y\right)\left(5+2x+y\right)\)
Vậy ...
b) \(x^2+2xy+y^2-xz-yz\)
\(=x^2+2xy+y^2-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
Vậy ...
c) \(x^2-4xy+4y^2-z^2+4zt-4t^2\)
\(=\left(x^2-4xy+4y^2\right)-\left(z^2-4zt+4t^2\right)\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2\)
\(=\left(x-2y+z-2t\right)\left(x-2y-z+2t\right)\)
Vậy ...
phân tích các đa thức sau thành nhân tử:
1, \(25-4x^2-4xy-y^2\)
\(=5^2-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2\)
\(=\left(5-2x-y\right)\left(5+2x+y\right)\)
2,\(x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
3,\(x^2-4xy+4y^2-z^2+4zt-4t^2\)
\(=\left(x^2-4xy+4y^2\right)-\left(z^2-4zt+4t^2\right)^{ }\)
\(=\left(x-2y\right)^2-\left(z-2t\right)^2\)
\(=\left(x-2y-z+2t\right)\left(x-2y+z-2t\right)\)