Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
khanhhuyen6a5

phân tích các đa thức sau thành nhân tử:

25-4x^2-4xy-y^2

x^2+2xy+y^2-xz-yz

x^2-4xy+4y^2-z^2+4zt-4t^2

Hắc Hường
14 tháng 6 2018 lúc 15:50

Giải:

a) \(25-4x^2-4xy-y^2\)

\(=25-\left(4x^2+4xy+y^2\right)\)

\(=5^2-\left(2x+y\right)^2\)

\(=\left(5-2x-y\right)\left(5+2x+y\right)\)

Vậy ...

b) \(x^2+2xy+y^2-xz-yz\)

\(=x^2+2xy+y^2-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

Vậy ...

c) \(x^2-4xy+4y^2-z^2+4zt-4t^2\)

\(=\left(x^2-4xy+4y^2\right)-\left(z^2-4zt+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2\)

\(=\left(x-2y+z-2t\right)\left(x-2y-z+2t\right)\)

Vậy ...

Phan Hoàng Linh Ngọc
14 tháng 6 2018 lúc 16:31

phân tích các đa thức sau thành nhân tử:

1, \(25-4x^2-4xy-y^2\)

\(=5^2-\left(4x^2+4xy+y^2\right)\)

\(=5^2-\left(2x+y\right)^2\)

\(=\left(5-2x-y\right)\left(5+2x+y\right)\)

2,\(x^2+2xy+y^2-xz-yz\)

\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

3,\(x^2-4xy+4y^2-z^2+4zt-4t^2\)

\(=\left(x^2-4xy+4y^2\right)-\left(z^2-4zt+4t^2\right)^{ }\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2\)

\(=\left(x-2y-z+2t\right)\left(x-2y+z-2t\right)\)


Các câu hỏi tương tự
Nguyễn Mary
Xem chi tiết
Tạ Thị Lan Anh
Xem chi tiết
Uyên Phạm
Xem chi tiết
Cục Cứk chiên giòn
Xem chi tiết
Hồ Nguyễn Trà  My
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Kaijo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
nguyentruongan
Xem chi tiết