Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Thùy Duyên

P=\(\dfrac{\sqrt{a+2}}{\sqrt{a+3}}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)

a) Rút gọn P

b) Tìm a ϵ Z để P nguyên

Hoàng Thanh Thanh
5 tháng 7 2021 lúc 10:50

a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)

P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)

P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P  = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)

P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) 

b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)

Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bảng sau: 

\(\sqrt{a}-2\)          1          -1           2          -2
\(\sqrt{a}\)          3          1           4          0
a          9 (TM)          1 (TM)          16 (TM)          0 (TM)

Vậy để \(P\in Z\) thì  \(a\in\left\{0;1;9;16\right\}\)


Các câu hỏi tương tự
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Nguyễn Phạm Mai Phương
Xem chi tiết
Nguyễn Phạm Mai Phương
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Lê Anh
Xem chi tiết
Hùng Trịnh
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Nguyễn Phạm Mai Phương
Xem chi tiết