đùng miền giá trị như trong NCPT tón 9 ấy !
đùng miền giá trị như trong NCPT tón 9 ấy !
cho biểu thức
A=(\(\dfrac{x\sqrt{x}-x}{x-1}+\dfrac{4\sqrt{x}}{x+\sqrt{x}}\)) : \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ( với \(x\ge0,x\ne1\) )
a, rút gọn
b, tìm giá trị nhỏ nhất của biểu thức A
Cho biểu thức \(M=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}-1\)
Tìm giá trị của x để M đạt giá trị lớn nhất
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho \(M=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
Tìm các giá trị lớn nhất hoặc nhỏ nhất của \(P=2M+\sqrt{x}+2-2013\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
cho a,b>0 thỏa mãn \(\left(\sqrt{a}+2\right)\left(\sqrt{b}+2\right)=9\)
Tìm giá trị nhỏ nhất của biểu thức T=\(\dfrac{a^4}{b}+\dfrac{b^4}{a}\)
Cho hai biểu thức: \(A=\dfrac{\sqrt{x}-3}{2\sqrt{x}+6}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\) với \(x\ge0;x\ne4;x\ne9\). Với x là số tự nhiên thỏa mãn: x>3, tìm giá trị lớn nhất của biểu thức \(P=\dfrac{B}{A}\)
Với x là số tự nhiên thỏa mãn: x>3, tìm giá trị lớn nhất của biểu thức: \(P=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)