Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn phương thảo

P = \(\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}}-\dfrac{x+\sqrt{x}}{x-1}\right).\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

a, rút gọn

b,tìm GTLN, GTNN

c. tính P tại x =\(7+2\sqrt{10}\)

d, tìm x để P>1

Akai Haruma
9 tháng 7 2018 lúc 18:15

Lời giải:

ĐK: \(x> 0; x\ne 1; x\ne \frac{1}{4}\)

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}}-\frac{x+\sqrt{x}}{x-1}\right). \frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\left(\frac{2x+\sqrt{x}-1}{x}-\frac{x+\sqrt{x}}{x-1}\right). \frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x-1}{x}-\frac{x+\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x-1}{x}-\frac{\sqrt{x}(\sqrt{x}+1)}{(2\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{x-1}{x}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}=\frac{x-1}{x}\)

b) ĐK chưa để tìm GTLN, GTNN

c) Tại \(x=7+2\sqrt{10}\Rightarrow P=\frac{6+2\sqrt{10}}{7+2\sqrt{10}}\)

d) \(P=\frac{x-1}{x}=1-\frac{1}{x}< 1\) với moi \(x>0\) nên không tồn tại giá trị của $x$ để $P>1$


Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Anhtrai Eazy
Xem chi tiết
Trang Nguyễn
Xem chi tiết
em ơi
Xem chi tiết
Trang Nguyễn
Xem chi tiết
ngoc linh bui
Xem chi tiết