1) \(\overset{lim}{x\rightarrow1}\)\(\dfrac{x^3-3x+2}{x^4-4x+3}\)\(\)
2)\(\overset{lim}{x\rightarrow2^-}\dfrac{x^3+x^2-4x-4}{x^2-4x+4}\)
3) \(\overset{lim}{x\rightarrow2}\dfrac{\left(x^2-x-2\right)^{20}}{\left(x^3-12x+16\right)^{10}}\)
4)\(\overset{lim}{x\rightarrow0^-}\dfrac{\left(1+x\right)\left(1+4x\right)-1}{x^2}\)
5) \(\overset{lim}{x\rightarrow-1}\dfrac{\sqrt{x+2}-1}{\sqrt{x+5}-2}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\sqrt[3]{2x+1}}{x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x+5}-3}{\sqrt[3]{5x+3}-2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[4]{2x+3}+\sqrt[3]{2+3x}}{\sqrt{x+2}-1}\)
1) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-1}{x}\)
2)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-x^3+3x-4}{x-1}\)
3) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}\)
4) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}\)
5) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}\)
6) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{x-\sqrt[3]{3x+2}}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{5+4x}-\sqrt[3]{7+6x}}{x^3+x^2-x-1}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x\sqrt{x^2+1}+2x+1}{\sqrt[3]{2x^3+x+1}+x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x^2-x+1}-\sqrt[3]{2x+3}}{3x^2-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{4x^2+x}+\sqrt[3]{8x^3+x-1}}{\sqrt[4]{x^4+3}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2-2}+\sqrt[3]{x^3+1}}{\sqrt{x^2+1}-x}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2x+3}{\sqrt{2x^2-3}}\)
\(\lim\limits_{x\rightarrow\pm\infty}\dfrac{2x^2-1}{3-x^2}\)
Tìm các giới hạn sau:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
1) \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
2)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}\)
3)\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}\)
4)\(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}\)
5) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}\)
6)\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)