Ta có : \(\widehat{xOt}+\widehat{tOz}=\widehat{xOz}=90^o\)(Oz | Ox)
\(\widehat{yOz}+\widehat{tOz}=\widehat{yOt}=90^o\)(Ot | Oy)
=>\(\widehat{xOt}=\widehat{yOz}\)
b) Kẻ tia Om là tia đối của tia Ox
=> Oz | Om (Oz | Ox)
Ta có: \(\widehat{tOz}+\widehat{zOy}=\widehat{tOy}=90^o\)(Ot | Oy)
\(\widehat{yOm}+\widehat{zOy}=\widehat{zOm}=90^o\)(Oz | Om)
=>\(\widehat{tOz}=\widehat{yOm}\)
Mà \(\widehat{yOm}+\widehat{xOy}=\widehat{xOm}=180^o\)
Nên: \(\widehat{xOy}+\widehat{zOt}=180^o\)