`Loại 1: chọn tùy ý 7 cuôn từ 19 cuốn C719 = 50388 cách
Loại 2: chọn 7 cuốn từ 2 môn
TH1: hóa +lí : C711 = 330
TH2: lí+ toán: C714 = 3432
TH3: hóa+ toán: C713 = 1716
tổng = 5478
ta có: loại 1 - loại 2 = 50388-5478=44910( cách)
`Loại 1: chọn tùy ý 7 cuôn từ 19 cuốn C719 = 50388 cách
Loại 2: chọn 7 cuốn từ 2 môn
TH1: hóa +lí : C711 = 330
TH2: lí+ toán: C714 = 3432
TH3: hóa+ toán: C713 = 1716
tổng = 5478
ta có: loại 1 - loại 2 = 50388-5478=44910( cách)
Trên kệ sách có 4 sách toán khác nhau, 5 sách lý khác nhau và 6 sách Hóa khác nhau. Tìm số cách chọn từ kệ sách đó 3 cuốn sách khác loại.
A. 120
B. 15
C. 74
D. 24
người ta sử dụng 3 loại sách gồm 8 sách toán , 6 sách lí, 5 sách hóa, mỗi loại gồm các cuốn sách đôi một khác nhau. ? có bn cách chọn 7 cuốn sách sao cho mỗi loại có ít nhât 1 cuốn.
m.n giải giúp mk vs
trên 1 kệ sách có 5 quyển sách toán, 4 sách lí, 3 sách văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn sách toán nằm ở giữa?
Giúp mình vs!
Một thầy giáo có 5 cuốn sách Toán, 6 cuốn sách Văn ,7 cuốn sách Anh Văn và các cuốn sách đôi một khác nhau. Thầy muốn tặng 6 cuốn sách cho 6 học sinh. Hỏi thầy có bao nhiêu cách tặng nếu :
a, Thầy chỉ muốn tặng 2 thể loại?
b, Thầy muốn sau khi tặng xong mỗi thể loại còn ít nhất một cuốn?
Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu hỏi trung bình, 15 câu hỏi dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ 3 loại câu hỏi và số câu hỏi dễ không ít hơn 2.
Một người vào cửa hàng ăn. Người đó muốn chọn thực đơn gồm một món ăn trong 10 món, một loại hoa quả tráng miệng trong 5 loại quả và một loại nước trong 4 loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn một bữa ăn ?
Một học sinh có 3 cuốn toán , 4 cuốn lí , 5 cuốn hóa . Hỏi có bao nhiêu cách chọn :
a/ 1 cuốn sách
b/ 3 cuốn sách thuộc 3 môn khác nhau
c/ 2 cuốn sách thuộc 2 môn khác nhau
Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8}. Có bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau lấy từ tập A và không bắt đầu bởi 123?
Từ các chữ số: 0; 1; 2; 3; 6; 7; 8; 9 có thể lập được bao nhiêu số tự nhiên gồm có sáu chữ số đôi một khác nhau, trong đó phải có mặt chữ số 7.