Bài 6. Tính tương đối của chuyển động. Công thức cộng vận tốc

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Liên Cutee

Một xuồng máy đi trong nước yên lặng với vận tốc bằng 30 km/h. Khi xuôi dòng từ A đến B mất 2h và khi ngược dòng từ B đến A mất 3h. Hãy tìm:
a. Quãng đường AB

b. Vận tốc dòng nước so với bờ

Tệ nạn của xã hội.
22 tháng 7 2017 lúc 21:06

Nước yên lặng mà vậy ak :)).

Bài làm:

Theo bài ra ta có: \(t_1=\dfrac{s}{v"+v'}\Rightarrow v'+v"=\dfrac{s}{t}=\dfrac{s}{2}\left(1\right)\)

\(t_2=\dfrac{s}{v'-v"}\Rightarrow v'-v"=\dfrac{s}{3}\left(2\right)\)

Lấy (1) + (2):\(2v'=\dfrac{5s}{6}\Leftrightarrow60=\dfrac{5s}{6}\)

\(\Rightarrow s=72km\)

\(Lấy\left(1\right)-\left(2\right)\): \(2v"=\dfrac{s}{6}\Rightarrow v"=\dfrac{72}{12}=6\)km/h

Phạm Thanh Tường
24 tháng 7 2017 lúc 9:21

Tóm tắt:

\(v_{xg}=30km|h\\ t_1=2h\\ t_2=3h\\ \overline{a)s_{AB}=?}\\ b)v_{nc}=?\)

Giải:

a) Vận tốc di chuyển của xuồng khi xuôi dòng là:

\(t_1=\dfrac{s_{AB}}{v_{xg}+v_{nc}}\Leftrightarrow v_{xg}+v_{nc}=\dfrac{s_{AB}}{t_1}\Leftrightarrow30+v_{nc}=\dfrac{s_{AB}}{2}\) (1)

Vận tốc di chuyển của xuồng máy khi ngược dòng là:

\(t_2=\dfrac{s_{AB}}{v_{xg}-v_{nc}}\Leftrightarrow v_{xg}-v_{nc}=\dfrac{s_{AB}}{t_2}\Leftrightarrow30-v_{nc}=\dfrac{s_{AB}}{3}\) (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}30+v_{nc}=\dfrac{s_{AB}}{2}\\30-v_{nc}=\dfrac{s_{AB}}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{5s_{AB}}{6}=60\\v_{nc}-\dfrac{s_{AB}}{2}=-30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}s_{AB}=72\\v_{nc}-\dfrac{72}{2}=-30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}s_{AB}=72\\v_{nc}=6\end{matrix}\right.\)

Vậy độ dài quãng AB là 72km

b) Vận tóc dòng nước so với bờ là: 6km/h (như câu a))


Các câu hỏi tương tự
Dung
Xem chi tiết
Thảo Uyên Lê
Xem chi tiết
hoàng văn anh
Xem chi tiết
Ly ly
Xem chi tiết
Huy Vũ Nguyễn
Xem chi tiết
Nguyễn
Xem chi tiết
Hồng Phát Nguyễn
Xem chi tiết
Dung Ngô
Xem chi tiết
hmmmm
Xem chi tiết