\(x=A\cos\left(\omega t+\varphi\right)\Rightarrow x'=v=\omega A\sin\left(\omega t+\varphi\right)\)
\(W_d=\dfrac{1}{2}mv^2=\dfrac{1}{2}.m.\omega^2A^2\sin^2\left(\omega t+\varphi\right)\)
\(=\dfrac{1}{2}kA^2.\dfrac{1}{2}\left[1-\cos2\left(\omega t+\varphi\right)\right]\)
\(=\dfrac{1}{4}kA^2\left[1-\cos\left(2\omega t+2\varphi\right)\right]\)
\(\Rightarrow f_{W_d}=2f_x=2.\dfrac{\omega}{2\pi}=\sqrt{\dfrac{k}{m.\pi^2}}=10\left(Hz\right)\)