với điều kiện x>=1 thì 2 pt mới tương đương. Nếu k có đk thì chỉ là suy ra thôi :)
Từ tây sang đông
với điều kiện x>=1 thì 2 pt mới tương đương. Nếu k có đk thì chỉ là suy ra thôi :)
Từ tây sang đông
Giải bất phương trình sau mà ko bình phương 2 vế
\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
Có bao nhiêu giá trị nguyên của tham số \(m\in[-2020;2020]\) để bất phương trình \(\left|4x-2m-\dfrac{1}{2}\right|>-x^2+2x+\dfrac{1}{2}-m\) luôn đúng với mọi \(x\).
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
giải các hệ bất phương trình : a) (x - 3)( \(\sqrt{2}\) - x)>0 và \(\frac{4x-3}{2}\) < x+3 ; b) \(\frac{2}{2x-1}\) <= \(\frac{1}{3-x}\) và ( giá trị tuyệt đối của x ) > 1
giải các hệ bất phương trình : a) (x - 3)( \(\sqrt{2}\) - x)>0 và \(\frac{4x-3}{2}\) < x+3 ; b) \(\frac{2}{2x-1}\) <= \(\frac{1}{3-x}\) và giá trị tuyệt đối của x > 1
giải các hệ bất phương trình : a) (x - 3)( \(\sqrt{2}\) - x) > 0 và \(\frac{4x-3}{2}\) < x+3 ; b) \(\frac{2}{2x-1}\)<= \(\frac{1}{3-x}\) và giá trị tuyệt đối của ( x ) > 1
giải các hệ bất phương trình : a) (x - 3)( \(\sqrt{2}\) - x) > 0 và \(\frac{4x-3}{2}\) < x+3 ; b) \(\frac{2}{2x-1}\) <= \(\frac{1}{3-x}\) và giá trị tuyệt đối của ( x ) > 1
giải các hệ bất phương trình : a) (x - 3)( \(\sqrt{2}\) - x) > 0 và \(\frac{4x-3}{2}\) < x+3 ; b) \(\frac{2}{2x-1}\) <= \(\frac{1}{3-x}\) và giá trị tuyệt đối của ( x ) > 1
giải các hệ bất phương trình : a) (x - 3)( \(\sqrt{2}\) - x)>0 và \(\frac{4x-3}{2}\) < x+3 ; b) \(\frac{2}{2x-1}\) <= \(\frac{1}{3-x}\) và giá trị tuyệt đối của x > 1