Khoảng biến thiên của mẫu số liệu là: 300 – 50 = 250 (km)
Cỡ mẫu \(n = 30\)
Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{30}}\) là mẫu số liệu gốc về độ dài quãng đường bác tài xế lái mỗi ngày trong một tháng được xếp theo thứ tự không giảm.
Ta có: \({x_1}; \ldots ;{\rm{ }}{x_5} \in [50;100)\); \({x_6}; \ldots ;{\rm{ }}{x_{15}} \in [100;150)\);\({x_{16}}; \ldots ;{\rm{ }}{x_{24}} \in [150;200)\);\({x_{25}};...;{x_{28}} \in [200;250)\);\({x_{29}};{x_{30}} \in [250;300)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in [100;150)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 100 + \frac{{\frac{{30}}{4} - 5}}{{10}}(150 - 100) = 112,5\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in [150;200)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 150 + \frac{{\frac{{3.30}}{4} - (5 + 10)}}{9}(200 - 150) = \frac{{575}}{3}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 79,17\)
Độ dài quãng đường (km) | [50; 100) | [100; 150) | [150; 200) | [200; 250) | [250; 300) |
Giá trị đại diện | 75 | 125 | 175 | 225 | 275 |
Số ngày | 5 | 10 | 9 | 4 | 2 |
Số trung bình: \(\overline x = \frac{{5.75 + 10.125 + 9.175 + 4.225 + 2.275}}{{30}} = 155\)
Độ lệch chuẩn: \(\sigma = \sqrt {\frac{{{{5.75}^2} + {{10.125}^2} + {{9.175}^2} + {{4.225}^2} + {{2.275}^2}}}{{30}} - {{155}^2}} = 3100\)