Áp dụng BĐT Bunhiacopxki ta có
\(S=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)\(=1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)}\)\(\le\sqrt{3.2.\left(a+b+c\right)}=\sqrt{6}\)
Đẳng thức sảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Vậy maxS=\(\sqrt{6}\)\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)