1. Pt có nghiệm khi
1. Pt có nghiệm khi
Cho hệ phương trình
\(\left\{{}\begin{matrix}3x+2y=4\\2x-y=m\end{matrix}\right.\). Tìm m để pt có ngo (x;y) với x<1, y<1. Với giá trị nào của m thì ba đg thẳng 3x+2y=4; 2x-y=m; x+2y=3 đồng quy
Cho phương trình: 2x3+3x2-mx+m-5=0
Tìm m để phương trình có:
a)Đúng 1 nghiệm
b)3 nghiệm phân biệt >0
c)3 nghiệm phân biệt thoả mãn:x13+x22+x32≤20
d) 3 nghiệm phân biệt <2.
Giúp nhanh cho tớ bây giờ với ạ.Cảm ơn rất nhiều ạ!!!
Cho hệ phương trình \(\left\{{}\begin{matrix}mx-\left(m+1\right)y=3m\\x-2my=m+2\\x+2y=4\end{matrix}\right.\) . Biết hệ phương trình có nghiệm khi tham số \(m=m_0\) . Giá trị \(m_0\) là ?
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
Tất cả các giá trị của tham số m để phương trình \(mx^4-2\left(m-1\right)x^2+\left(m-1\right)m=0\) có một nghiệm là
Với giá trị nào của m thì phương trình \(\left(m-1\right)x^2-2\left(m-2\right)x+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+x_2+x_1x_2< 1\)?
với giá trị nào của m thì phương trình (m-3)x2 + (m+3)x-(m+1)=0 có hai nghiệm phân biệt?
giải kĩ hộ mình với ạ!