Đặt \(A=1^3+2^3+3^3+...+99^3+100^3\)
\(\Rightarrow A=\left(1-1\right).1.\left(1+1\right)+1+\left(2-1\right).2.\left(2+1\right)+2+...+\left(99-1\right).99.\left(99+1\right)+99+\left(100-1\right).100.\left(100+1\right)+100\)
\(\Rightarrow A=1+2+1.2.3+3+2.3.4+...+100+99.100.101\)
\(\Rightarrow A=\left(1+2+3+...+100\right)+\left(1.2.3+2.3.4+...+99.100.101\right)\)
\(\Rightarrow A=5050+101989800\)
\(\Rightarrow A=101994850.\)
Vậy \(A=101994850.\)
Chúc bạn học tốt!