Cho (O) và M nằm ngoài đường tròn. Kẻ hai tiếp tuyến MA, MB sao cho \(\widehat{AMB}=90^o\). Từ C trên cung nhỏ AB kẻ tiếp tuyến với đường tròn cắt MA, MB lần lượt ở P và Q. Biết R=5cm
a) Tứ giác AMOB là hình gì? Vì sao?
b) Tính chu vi tam giác MPQ
c) Tính \(\widehat{BOQ}\)
Tết ơi ......tết nầy mình buồn lắm ...huhu một đống BT . Ai thương giúp tôi với, tết này mọi người ăn tết hết rồi hay sao mà ít người ở học 24 quá vậy ??? Bạn nào học lớp 9 vậy giup mk làm mấy bài này với..năn nỉ đó
1)
Cho tam giác ABC nội tiếp (O) các đường cao AD, BE, CF đồng quy tại H. CÁc tia AD, BE, CF cắt (O) tại các điểmthứ hai tương ứng A' ; B' ;C'
a) CMR AB,BC, CA là trung trực của các đoạn thẳng tương ứng HC' HA' HB'
b) CMR H là tâm đường tròn nội tiếp tam giác DEF
2)
MA và MB là hai tiếp tuyến của (O) . Vẽ (M;MA) , C là một điểm nằm trên cung AB của (M) ( cung AB nằm trong đường tròn O) Tia AC , BC cắt (O) ở P, Q . CMR P và Q đối xứng với nhau qua O
3)
cho hai đường tròn (O) và (O') cắt nhau ở A,B . o nằm trên (O'). Dây AC của (O) cắt (O') ở D , dây OE của (O') cắt (O) ở F. CMR
a) OD vuông góc với BC
b) Điểm F cách đều ba cạnh của tam giác ABE
giúp mk nha
4)
mấy bạn giúp mk với mk còn nhiều lắm ~~~~~~~~~~~~~~~~~~~~~~
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho đường tròn(O;R) và đường thẳng (d) không qua O cắt đường tròn tại hai điểm A và B.Từ một điểm M trên (d)(M nằm ngoài đường tròn (O) và A nằm giữa B và M),vẽ hai tiếp tuyến MC,MD của đường tròn (O)(C, D ∈ (O)).Gọi I là trung điểm của AB, tia IO cắt MD tại K
a)Chứng minh 5 điểm:M, C, I, O, D cùng thuộc 1 đường tròn
b)Chứng minh:KD.KM=KO.KI
c)Một đường thẳng đi qua O và song song với CD cắt các tia MC,MD lần lượt tại E,F.Xác định vị trí của điểm M trên đường thẳng (d) sao cho diện tích △MEF đạt giá trị nhỏ nhất.
Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Kẻ đường kính AC, tiếp tuyến tại C của đường tròn cắt AB tại D. Gọi I là trung điểm của MO.
a) Chứng minh 4 điểm M, A, O, B cùng thuộc một đường tròn.
b) Chứng minh AB.AD = AC2 .
c) Tia AI cắt đường thẳng BC tại K. Chứng minh tứ giác MOCK là hình bình hành.
cho đường tròn tâm o bán kính và m là một điểm nằm bên ngoài đường tròn . từ m kẻ hai tiếp tuyến từ ma,mb với đường tròn r (o) (a b là các tiếp điểm gọi e là giao điểm của ab và om
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA\(^2\)