\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)=4>0\) ;\(\forall m\ne-1\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi \(m\ne-1\)
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)=4>0\) ;\(\forall m\ne-1\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi \(m\ne-1\)
Chứng minh phương trình x^2-2(m+2)x+2m^2+3=0 luôn có hai nghiệm phân biệt với mọi giá trị của m
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
Cho phương trình \(x^2-5mx-4m=0\) ( với m là tham số). Chứng minh rằng khi phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(x^2+5mx_2+m^2+14m+1>0\)
Bài tập:Cho phương trình ẩn x,tham số m: \(mx^2-5x-\left(m+5\right)=0\) (1)
1.Giải phương trình(1) với m=5
2.Chứng tỏ rằng phương trình (1) luôn có nghiệm với mọi giá trị của m
cho phương trình x bình phương cộng 2 x m + 1 x + m bình phương = 0 a giải phương trình với m = 5 B tìm m để phương trình 1 có 2 nghiệm phân biệt trong đó có 1 nghiệm bằng -2
1. Cho PT ( ẩn x ) : x2 - 2mx + m2 - 3 = 0 (1)
a, Giải PT (1) khi m = 3
b, Chứng minh rằng với mọi m thì p/t có 2 nghiệm phân biệt
Cho phương trình x^2 + 2(m - 3)x + m^2 =0 a. Giải phương trình với m = 0 b. Tìm m pt có hai nghiệm phân biệt. Tính tổng và tích hai nghiệm theo m
Cho phương trình \(x^2-3x+m=0\) (1) (x là ẩn).
Tìm các giá trị m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\).
cho pt (1) \(x^2-2\left(m-1\right)x+m-3=0\)
a, CM : pt (1)có nghiệm với mọi m
b, Tìm m để pt (1) có 2 nghiệm phân biệt thỏa mãn\(x_1^2+x^2_2=10\)