lúc 4h30p hai xe đạp cùng xuất phát tại một điêm trrrn một vòng tròn đua bán kính 250m với vận tốc không đổi lần lượt là 32,5km/h và 35km/h. hỏi
a) lần đầu tiên 2 xe gặp nhau lúc mấy giờ ? khi đó mỗi xe đi dược quàng đường bao nhiêu km?
b) trong thời gian biểu diển 1.5h hai xe gặp nhau bao nhiêu lần ?
R = 250 m = 0,25 km
Chiều dài của trường đua chính là chu vi của hình tròn bán kính 0,25km
s = π.2.R=3,14 . 2 . 0,25= 1,57km
khi bắt đầu xuất phát tại 1 điểm, vì 2 xe di chuyển cùng chiều nên khoảng cách 2 xe chính là độ dài của trường đua
Thời gian để 2 xe gặp nhau lần 1 kể từ lúc xuất phát là:
t = \(\frac{s}{v_2-v_1}=\frac{1,57}{35-32,5}=0,628\left(h\right)=38\left(p\right)\)
vậy lần gặp đầu tiên của 2 xe vào lúc 5h8p
Quãng đường xe 1 đi được trong thời gian t là:
s1 = v1.t = 0,628 . 32,5 = 20,41 (km)
Quãng đường xe 2 đi trong thời gian t là:
s2 = v2.t = 0,628 . 35 = 21,98 (km)
b) từ câu a ta có, khi 2 xe xuất phát từ 1 điểm thì cứ sau t = 0,628 h thì lại gặp nhau 1 lần,
Vậy số lần gặp nhau trong 1,5 h là:
n = \(\frac{1,5}{0,628}=2,4\left(l\text{ần}\right)\)
Vì n ϵ Nnên n chỉ có thể = 2Vậy trong 1,5 h 2 xe gặp nhau 2 lần
)