a) Có các TH:
Nam | Nữ |
1 | 9 |
2 | 8 |
3 | 7 |
4 | 6 |
5 | 5 |
6 | 4 |
7 | 3 |
8 | 2 |
9 | 1 |
\(n=C^1_{25}\cdot C_{30}^9+C^2_{25}\cdot C_{30}^8+...+C_{25}^9\cdot C^1_{30}\)
b) Có ít nhất 1 nữ: (giống a)
c) Có nhiều nhất 2 nữ:
+ 2 nữ và 8 nam: \(C_{30}^2\cdot C_{25}^8\)
+ 1 nữ và 9 nam: \(C_{30}^1\cdot C_{25}^9\)
+ 0 nữ và 10 nam: \(C_{30}^0\cdot C_{25}^{10}\)
\(\Rightarrow\) Cộng lại ta đc 535043135
Chọn ra 10 bạn bất kì: có \(C_{55}^{10}\) cách
Chọn 10 bạn ko có nữ nào: \(C_{25}^{10}\) cách
Chọn 10 bạn không có nam nào: \(C_{30}^{10}\) cách
a. Chọn 10 bạn có cả nam và nữ:
\(C_{55}^{10}-\left(C_{25}^{10}+C_{30}^{10}\right)\) cách
b. Có ít nhất 1 nữ:
\(C_{55}^{10}-C_{25}^{10}\) cách
c. Câu c làm như bạn trên