\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x}-x\right)\\ =\lim\limits_{x→-\infty}\dfrac{x^3+x-x^3}{\left(\sqrt[3]{x^3+x}\right)^2+x\sqrt[3]{x^3+x}+x^2}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{\left(\sqrt[3]{1+\dfrac{1}{x^2}}\right)^2+\sqrt{1+\dfrac{1}{x^2}}+1}\\ =\lim\limits_{x\rightarrow-\infty}\dfrac{0}{1^2+1+1}=0\)