\(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\)\(\Rightarrow\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\)
\(\Rightarrow\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)
tuongtu \(\sqrt{y^2+3}-y=\sqrt{x^2+3}+x\)
cộng 2 vế trên ta có \(-\left(x+y\right)=x+y\Rightarrow x+y=0\)