\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
a) Cho \(a+b+c=0\). Đặt P = \(\frac{a-c}{c}+\frac{b-c}{a}+\frac{c-a}{b}\), Q = \(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\). Tính \(P\times Q\)
b) Rút gọn rồi tính giá trị của biểu thức:
E = \(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết \(1-\frac{x^2}{abc}=0\)
S=\(\left(\dfrac{x^3-3x}{x^2-9}-1\right):\left[\dfrac{9-x^2}{\left(x+3\right)\left(x-2\right)}+\dfrac{x-3}{x+3}-\dfrac{x+2}{x-2}\right]\)
Cho biểu thức :
\(R=\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{x^2+x}{x^3+x}\)
Tìmđiều kiện của x để giá trị của biểu thức được xác định.
Cho biểu thức \(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)
a) Rút gọn P
b) Tìm x để P= -1/2
c) Tìm GTNN của P khi x>1
Cho biểu thức A=(\(\left(\frac{4x}{2+x}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)
Rút gọn A và tìm các giá trị của x để A<0
Các cậu giúp tớ với, tớ cảm ơn trước nha
1, tính
a,\(\dfrac{x+1}{x+2}:\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\)
b,\(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
c,\(\dfrac{x+3}{x+1}-\dfrac{2x-1}{x-1}-\dfrac{x-3}{x^2-1}\)
d,\(\dfrac{bc}{\left(a-b\right).\left(a-c\right)}+\dfrac{ac}{\left(b-a\right).\left(b-c\right)}+\dfrac{ab}{\left(c-a\right).\left(a-b\right)}\)
Thực hiện phép tính sau
\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
Tìm phân thức P biết :
a) \(p=\dfrac{4x^2-16}{2x+1}=\dfrac{4x^2+4x+1}{x-2}\)
b) \(\dfrac{2x^2+4x+8}{x^3-3x^2-x+3}:P=\dfrac{x^3-8}{\left(x+1\right)\left(x-3\right)}\)